





Linkedin Hyunjin Cho

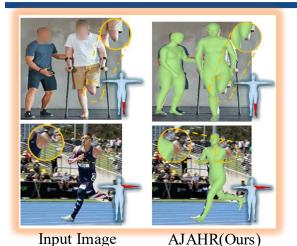


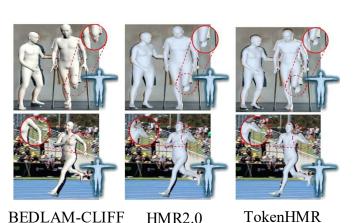
# AJAHR: Amputated Joint Aware 3D Human Mesh Recovery

Hyunjin Cho<sup>1,2,\*</sup> , Giyun Choi<sup>1,\*</sup> , Jongwon Choi<sup>1†</sup>

<sup>1</sup> Dept. of Advanced Imaging, GSAIM, Chung-Ang University, Korea

<sup>2</sup> Korea Institute of Industrial Technology (KITECH), Korea


\* Equal Contribution †Corresponding Author


Project Page



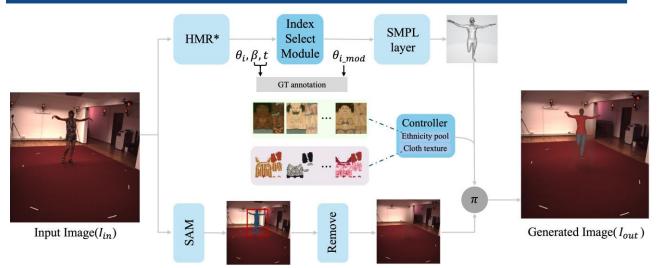


# **Introduction & Motivation**





# 3D Human Mesh Recovery for Amputees


- No prior Human Mesh Recovery (HMR) Studies addressing amputees
- Existing HMR models trained only on non-amputee data

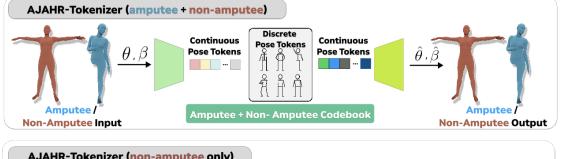
  → Previous HMR models hallucinate missing limbs
- Collecting real amputee data is very challenging

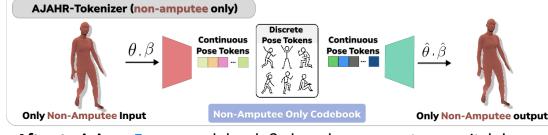
### Contribution

- We introduce an amputation-aware HMR framework that detects whether a subject is <u>amputee or non-amputee from a single view and</u> <u>reconstructs the corresponding mesh.</u>
- We introduce <u>amputee datasets</u>: A3D (synthetic) and ITW-amputee (in-the-wild crawling evaluation dataset)
- We propose BPAC-Net for amputation localization and AJAHR-Tokenizer for model switching, forming a unified framework that restores SMPL by dispatching to amputee-specific vs intact-specific reconstruction experts.
- Our approach demonstrates **state-of-the-art performance in amputee** datasets while maintaining **competitiveness on non-amputee** benchmarks

# **Dataset Pipeline**




### **Model Architecture**


### - Framework of AJAHR



- **BPAC-Net**: Predicts amputation and a mesh representation from the **image + 2D keypoints**, implicitly guiding AJAHR with spatial cues
- AJAHR: Uses TokenHMR-Based regression outputs; switches tokenizer per BPAC-Net to recover pose, predicting remaining SMPL parameter with Linear Layer

### - AJAHR-Tokenizer





 After training: Freeze codebook & decoder parameters, switch by Amputation status to reconstruct poses (no update in AJAHR)

# **Conclusion**

- Prior HMR hallucinates missing limbs; not amputation-aware.
- Amputation-aware HMR with BPAC-Net + AJAHR-Tokenizer
- Ethical synthetic pipeline (A3D); in-the-wild eval (ITW-Amputee).
- Strong on amputees; competitive on benchmarks, robust in the wild.

# **Quantitative Result**

### **Evaluation Protocol**

\*For fair evaluation, we remove the corresponding mesh parts using ground-truth (GT) amputation labels. During inference, 2D keypoints obtained from a **keypoint detector** are fed into BPAC-Net to predict whether amputation is present.

### Amputee / Non-Amputee Dataset

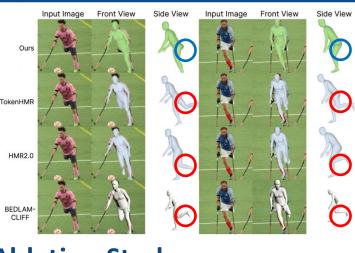
| Made at              | A3D   |        |           | ITW-amputee |        |           | Method               |        | EMDB [ | 18]       | 3DPW [37] |        |           |
|----------------------|-------|--------|-----------|-------------|--------|-----------|----------------------|--------|--------|-----------|-----------|--------|-----------|
| Method               | MVE↓  | MPJPE↓ | PA-MPJPE↓ | MVE↓        | MPJPE↓ | PA-MPJPE↓ | Method               | MVE↓   | MPJPE↓ | PA-MPJPE↓ | MVE↓      | MPJPE↓ | PA-MPJPE↓ |
| HMR2.0 [10]          | 89.35 | 96.75  | 86.14     | 110.33      | 154.43 | 121.83    | HMR2.0 [10]          | 141.41 | 117.66 | 75.89     | 95.29     | 81.64  | 53.95     |
| BEDLAM-CLIFF [5, 22] | 83.38 | 88.12  | 56.45     | 128.09      | 150.12 | 117.74    | BEDLAM-CLIFF [5, 22] | 129.00 | 97.88  | 62.40     | 99.32     | 76.45  | 51.21     |
| TokenHMR [9]         | 76.01 | 74.70  | 49.94     | 136.52      | 146.12 | 91.00     | TokenHMR [9]         | 113.26 | 93.77  | 58.98     | 90.23     | 72.87  | 47.17     |
| AJAHR (Ours)         | 73.42 | 73.19  | 49.42     | 116.42      | 129.25 | 77.18     | AJAHR (Ours)         | 112.83 | 91.74  | 58.62     | 95.26     | 71.77  | 44.94     |
|                      |       |        |           |             |        |           |                      |        |        |           |           |        |           |

Table 2. Results on Amputee Data.

Table 3. Results on Non-Amputee Data.

### **BPAC-Net Accuracy**

|   | Method |                       | A3D (amputa            | ttion)  |       | 3DC       |                        |         |       |
|---|--------|-----------------------|------------------------|---------|-------|-----------|------------------------|---------|-------|
|   |        | Accuracy <sup>†</sup> | Precision <sup>↑</sup> | Recall↑ | F1↑   | Accuracy↑ | Precision <sup>↑</sup> | Recall↑ | F1↑   |
| _ | Ours   | 0.881                 | 0.756                  | 0.922   | 0.820 | 0.956     | 0.956                  | 1.000   | 0.977 |


| Dataset Quality |  |
|-----------------|--|
|-----------------|--|

| Dataset      | A3D(MPII [1]) | A3D(MSCOCO [11]) | A3D(H3.6M [6]) | Avg.  |
|--------------|---------------|------------------|----------------|-------|
| LPIPS [26],↓ | 0.0735        | 0.0421           | 0.16186        | 0.155 |

# **Dataset**

# Qualitative Results on in-the-wild image





# **Ablation Study**

### Ablation Experiments on the Components of BPAC-Net and AJAHR-Tokenize



| Experiments                           | Use Classifier |        | <b>EMDB</b> | [20]      |        | 3DPW   | [41]      |        | A31    | D         |        | ITW-amp | putee    |
|---------------------------------------|----------------|--------|-------------|-----------|--------|--------|-----------|--------|--------|-----------|--------|---------|----------|
|                                       |                | MVE↓   | MPJPE.      | PA-MPJPE↓ | MVE↓   | MPJPE↓ | PA-MPJPE↓ | MVE↓   | MPJPE. | PA-MPJPE↓ | MVE↓   | MPJPE↓  | PA-MPJPE |
| (a) Noise Ratio: 100%                 | <b>√</b>       | 117.71 | 96.22       | 60.97     | 99.03  | 75.64  | 49.31     | 91.30  | 91.21  | 71.31     | 144.08 | 147.41  | 88.08    |
| Noise Ratio: 75%                      | ✓              | 115.77 | 94.78       | 59.31     | 97.91  | 73.31  | 46.88     | 89.12  | 89.32  | 69.74     | 142.21 | 145.99  | 86.51    |
| Noise Ratio: 50%                      | ✓              | 115.31 | 94.12       | 59.22     | 97.43  | 72.77  | 45.87     | 88.76  | 88.98  | 69.32     | 141.78 | 145.01  | 86.17    |
| Noise Ratio: 25%                      | ✓              | 114.82 | 94.03       | 58.88     | 97.31  | 72.08  | 45.08     | 87.98  | 88.37  | 68.71     | 140.09 | 144.24  | 85.21    |
| (b) Image only                        | ✓              | 131.81 | 109.98      | 74.21     | 113.71 | 87.09  | 59.54     | 105.88 | 103.12 | 85.44     | 152.21 | 154.55  | 92.71    |
| Keypoint only                         | ✓              | 118.21 | 96.12       | 61.71     | 100.87 | 74.87  | 46.91     | 90.12  | 89.21  | 70.77     | 141.64 | 146.21  | 87.88    |
| (c) HMR2.0 [10] + BPAC-Net            | ✓              | 149.31 | 125.69      | 80.74     | 100.21 | 89.74  | 56.91     | 104.72 | 104.75 | 94.32     | 134.71 | 176.46  | 132.27   |
| BEDLAM-CLIFF [5, 24] + BP             | AC-Net√        | 133.75 | 100.29      | 73.24     | 103.98 | 83.21  | 54.28     | 92.77  | 96.48  | 75.87     | 147.51 | 166.07  | 126.90   |
| (d) 160 Tokens                        | ✓              | 117.38 | 98.12       | 61.94     | 101.56 | 75.83  | 47.21     | 90.47  | 90.28  | 71.04     | 144.78 | 147.91  | 89.63    |
| 640 Tokens                            | ✓              | 127.92 | 107.43      | 64.75     | 106.67 | 77.69  | 50.36     | 93.81  | 96.92  | 75.08     | 149.35 | 151.80  | 94.12    |
| Ours (Image + Keypoint guide + 320 To | kens) ✓        | 114.52 | 93.73       | 58.01     | 97.02  | 71.97  | 44.98     | 87.11  | 87.91  | 68.01     | 139.64 | 143.74  | 84.91    |
| (e) Amputation Only (Single)          |                | 115.70 | 93.75       | 59.08     | 96.32  | 72.76  | 45.92     | 74.71  | 74.51  | 49.93     | 118.09 | 131.12  | 78.08    |
| Non Amputation Only (Single)          |                | 113.09 | 92.07       | 57.97     | 95.34  | 72.02  | 45.02     | 76.01  | 76.31  | 50.99     | 120.81 | 134.71  | 81.82    |
| Ours (Unified)                        |                | 112.83 | 91.74       | 58.62     | 95.26  | 71.77  | 44.94     | 73.42  | 73.19  | 49.42     | 116.42 | 129.25  | 77.18    |

#### (a) Add Noise to 2D kpts (b) BPAC-Net Input, (c) Change Backbone (d) AJAHR-Tokenizer Tokens (e) Dual Vs. Single Tokenizer

### Acknowledgement

Acknowledgements. This research was partly supported by Culture, Sports and Tourism R&D Program through the Korea Creative Content Agency grant funded by the Ministry of Culture, Sports and Tourism in 2023 (Project Name: Development of high-freedom large-scale user interaction technology using multiple projection spaces to overcome low-light lighting environments, Project Number: RS-2023-00222280, Contribution Rate: 50%) and the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) [IITP-2025-RS-2024-00437102, ITRC(Information Technology Research Center) support program; RS-2021-II211341, Artificial Intelligence Graduate School Program (Chung-Ang University)], Korea Institute of Industrial Technology (KITECH).