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Figure A. Pipeline for Synthesizing Images of Individuals with Amputations. The input image (/;,) is sourced from benchmark
datasets [1, 6, 11] and processed through ScoreHMR [16], an HMR-based model (*), which infers SMPL parameters from the image. We
extracted the human region using SAM (Segment Anything Model) [10] for masking and then removed the region using LaMa [17] to
generate the background. Finally, the generated human mesh was projected onto the background image to create the final image(,ut).

We provide additional details about AJAHR in the sup-
plementary material. Sec. A introduces the Amputee 3D
(A3D) dataset. Sec. B explains how we leveraged the
SMPL prior to effectively represent amputations on the
mesh and details the dataset synthesis pipeline for the A3D
Dataset. Sec. B shows the visual effects of applying non-
zero SMPL pose parameters. Sec. D and Sec. E evalu-
ates A3D quality and shows that increasing its proportion
improves in-the-wild performance without quality degrada-
tion. In Sec. F, Sec. G, Sec. H, introduces detail the archi-
tectures, training schemes, and hyperparameters of AJAHR,
BPAC-Net, and the AJAHR-Tokenizer, respectively. Sec. [
presents quantitative evaluations of the proposed AJAHR
model’s tuning strategy and variations in module configura-
tion. Lastly, Sec. J presents ablation studies on the number
of tokens and codebook size in the AJAHR-Tokenizer.

* Equal contribution. T Corresponding author.

A. A3D Dataset Synthesis Pipeline Details

The detailed process of the data synthesis pipeline is
presented in Fig. A. We employ ScoreHMR [16], which re-
fines predictions by incorporating 2D image cues during in-
ference, making it more effective than conventional regres-
sion models for estimating plausible human poses.

To effectively simulate amputated body parts in the
SMPL [12] representation, we introduce the index select
module. This module assigns an index from O to 11, rep-
resenting different amputation types, to the 24 joints of the
SMPL body model. The module selects all indices corre-
sponding to the amputated region and its connected child
joints, setting their SMPL pose parameters to a zero ma-
trix. This modified SMPL pose is subsequently processed
by the SMPL layer, generating a mesh representation of the
amputated body.

In the controller module, we adopt BEDLAM [2]’s
dataset generation approach, which includes incorporating
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Figure B. The top image illustrates the visualization of SMPL [12]
Skeleton Hierarchy and 3D Joint index mapping The bottom image
presents multiple views of the scenario where the R_Knee (index
5) is the parent joint, while R_Ankle (index 8) and R_Foot (index
11) are its corresponding child joints. Setting the R_Knee to a zero
matrix causes all vertex positions associated with these child joints
to converge toward the parent joint, as visualized from different
angles.

skin and clothing textures to ensure a balanced distribu-
tion across two genders (male and female) and seven eth-
nic groups. This process enhances the diversity of synthetic
representations in terms of both ethnicity and appearance.
These textures are synthesized onto mannequins in various
poses, allowing us to generate images of individuals with
diverse limb amputations.

Unlike other works in text-to-image or text-to-motion
generation, our approach leverages widely used datasets in
the human pose estimation field, such as H36M, MPII, and
MSCOCO [1, 6, 11], ensuring a broad range of diverse
poses. Furthermore, by leveraging our synthesis pipeline,
we reduce the burden of manually generating diverse poses
using motion generation models such as T2M-GPT [25],
which are commonly used for text-to-motion synthesis.

The generated amputee meshes are subsequently over-
laid onto various background images to improve environ-
mental diversity. To achieve this, we incorporated both in-
door lab data and in-the-wild pose images from diverse en-
vironments. We further utilized LaMa [17] for object re-
moval, where human regions detected by a segmentation
model [10] are masked and removed before projecting the
amputee mesh onto the cleared area.

For removing existing humans from the background,
we use the Segment Anything Model (SAM) [10] and
LaMa [17] in sequence: SAM is used to segment the human

region, and LaMa inpaints the masked area. Since SAM
performs open-vocabulary segmentation based on various
prompts (e.g., point clicks, boxes, masks), we prepend a
pre-processing module that detects humans via bounding
boxes and places point prompts at the top, bottom, left, and
right edges of the detected box. This refinement ensures ac-
curate segmentation of only the intended human region and
enables clean removal before mesh overlay.

To improve person detection coverage in the input
data, we replace Detectron2 [23] with a stronger detector:
YOLOvI11 [7], fine-tuned on the CrowdHuman dataset [15]
for human-only detection. Compared to widely used de-
tectors [23], this model detects more individuals across
crowded scenes, thereby maximizing the usability of input
data and boosting the diversity of generated amputee im-
ages.

Finally, we apply a post-processing filter to remove
failed or low-quality syntheses. Specifically, we propose
a quality checker module that evaluates the realism and vi-
sual fidelity of the background after human removal. First,
we compute the Structural Similarity Index (SSIM) [21]
between the original input image and the LaMa-inpainted
background. Images with SSIM scores below 0.5 are ex-
cluded from the dataset, as they typically exhibit blurry or
overly smoothed artifacts.

Second, we verify whether the human has been success-
fully removed by applying a 2D human pose detector to the
inpainted image. Only images in which no human keypoints
are detected are retained. This two-stage filtering process
ensures that the background remains both visually natural
and free of human remnants, thereby enhancing the overall
quality of the synthesized dataset.

B. Representation of Amputation under the
SMPL

In Fig. B, our study demonstrates that when a specific
joint index in the SMPL skeleton hierarchy, such as the
R_Knee joint, is set to a zero matrix and passed through the
SMPL Layer, all vertex positions associated with its child
joints converge toward the R_Knee. This behavior effec-
tively illustrates the hierarchical influence of the parent joint
on its corresponding child joints within the SMPL model

structure.
:::l

Figure C. Effect of varying the pose parameters on the left wrist
from —1.0 to 1.0.
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Figure D. Impact of A3D Data Proportion on Performance. Comparison of model performance when varying the ratio of A3D amputee

data within each training batch, evaluated on in-the-wild datasets.
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Figure E. Overview of the Body Part Amputation Classifier (BPAC-Net). The input image I and 2D keypoints K (converted to
heatmaps) are concatenated and processed through a ResNet-32 [4] enhanced with Convolutional Block Attention Module (CBAM) [22],
which applies spatial and channel attention. The extracted features F' are fed into a feature alignment head to produce hioken, Which is
later used in the Transformer Decoder [19] via cross-attention. Four classifier heads H, € {Hr,pm> HRapm> Hijeys HR,., }» Predict

amputation status for each corresponding body part.

C. Visualization with Varying Left Wrist Pose
Parameters

As shown in Fig. C, applying a zero pose to the left
wrist results in a clean amputation effect, with no distor-
tion in surrounding body parts. In contrast, non-zero values
cause visible artifacts or unnatural deformations near the
joint. This empirically supports our choice of using zero
pose parameters as a reliable proxy for amputated regions
while maintaining local shape integrity.

D. A3D Quality

[ A3SD(MPII [1]) [ A3D(MSCOCO [11]) [ A3D(H3.6M [6]) [ Avg.
00735 | 0.0421 \ 0.16186 | 0.155

Dataset
LPIPS [26].] |

Table A. LPIPS scores for A3D across datasets.

As shown in Tab. A, our A3D dataset, synthesized as
described in Sec. A, exhibits high perceptual realism with

an average LPIPS [26] of 0.155. Since lower LPIPS cor-
responds to a smaller perceptual distance between image
pairs, this supports that our synthesis pipeline faithfully pre-
serves background, lighting, and texture details at a level
comparable to real images. Furthermore, the ablation re-
sults in Fig. D show that simply augmenting the training
set with A3D consistently reduces PA-MPJPE and MVE on
various in-the-wild benchmarks, including 3DPW [20] and
ITW-amputee. This suggests that A3D sufficiently incorpo-
rates outdoor visual factors (such as lighting variation and
background complexity) commonly encountered in in-the-
wild environments, thereby enabling the model to improve
its generalization when trained with it. The high perceptual
quality of A3D thus plays a critical role in boosting human
mesh recovery performance on natural images even without
real amputee data.



Full Partially Cross Use EMDB [9] 3DPW [20] A3D ITW-amputee
Fine tuning  Fine tuning  Attention Classifier | MVE| MPJPE| PA-MPIPE| | MVE| MPIPE| PA-MPIJPE| | PVE| MPJPE| PA-MPJPE| | PVE| MPIPE| PA-MPIPE|

(a) v 11453 94.37 58.68 97.16 72.68 46.00 74.98 74.45 48.80 121.62 13373 77.94
v 11299  92.05 58.84 95.73 71.33 47.72 73.98 74.30 49.71 122.34 13295 81.23

' v 116.78 95.84 57.29 98.66 72.01 44.95 75.99 73.29 49.54 126.46 139.05 83.88

v v 112.83 9174 58.62 95.26 71.77 44.94 7342 7319 49.42 116.42  129.25 77.18

(b) v v 11342 9733 59.87 97.98 73.68 47.76 89.34 89.96 69.87 143.49  154.83 85.17
v v 11393 94.12 58.87 98.51 73.88 48.90 89.12 88.12 68.17 14501 153.17 90.12

v v v 115.65  97.98 59.08 99.34 7223 45.16 88.51 88.32 68.19 148.28 15751 93.11

v v v 11452 93.73 58.01 97.02 71.97 44.98 87.11 87.91 68.01 139.64 143.74 84.91

Table B. Comparison of AJAHR Module Ablation Studies. (a) Partially Fine-Tuning method freezes the AJAHR parameters while
selectively updating a limited set of trainable parameters within each module. In contrast, Full Fine-Tuning updates all parameters of
AJAHR during training. (b) After BPAC-Net infers the body part status, the corresponding label is used to force the inferred SMPL body
pose parameters to zero. The evaluation is then conducted using 3D keypoints obtained from the reconstructed mesh.

E. Effect of A3D Proportion on In-the-Wild
Performance

In Fig. D, the effect of varying the proportion of the
amputee dataset A3D within the training batch is exam-
ined under in-the-wild evaluation settings. The ratio of
A3D was gradually increased from 25% to 100% of each
training batch, and the model was evaluated at each stage.
As the proportion of A3D increased, consistent improve-
ments were observed across all evaluation metrics, includ-
ing MPJPE, PA-MPJPE, and MVE.

The most notable improvement in PA-MPJPE was ob-
served on the ITW-amputee dataset, whereas EMDB [9]
exhibited the most significant gains in MPJPE and MVE.
These results suggest that the model effectively learns from
the A3D dataset and benefits from increased exposure, re-
sulting in enhanced reconstruction performance for both
amputee and non-amputee subjects.

F. AJAHR Architecture Implementation De-
tail

AJAHR architecture utilizes ViTPose [24] as the back-
bone network to embed input images, and adopts a Trans-
former decoder [19] following HMR2.0 [8]. Among the
output tokens from the Transformer decoder, the global ori-
entation, body shape, and camera translation are each re-
gressed through separate linear layers. For the body pose,
in order to match the distribution of AJAHR-Tokenizer, the
1024-dimensional features are passed through six sequen-
tial blocks, each composed of two multilayer perceptrons
(MLPs) and a GELU [5] activation function. We adopt a
partially fine-tuned strategy, where only the last four blocks
of the ViTPose [24] backbone, the patch embedding layer,
the pose embedding layer, and the final two blocks of the
Transformer decoder are updated during training.

AJAHR is trained in parallel on two NVIDIA A100
GPUs using the AdamW [13] optimizer, with a batch size of
64, a learning rate of 5¢ =5, and a weight decay of 1e~*. To
ensure balanced learning, we sample the amputee and non-
amputee datasets with equal probability (0.5 each). Train-

ing is conducted for a total of 150,000 iterations.

G. BPAC-Net Architecture Implementation
Detail

The architecture of Body Part Amputation
Classifier(BPAC-Net) is presented in Fig. E, where
the input and output feature dimensions of each learnable
block are indicated below the respective blocks. BPAC-Net
takes batch images along with their corresponding keypoint
information as input, which are transformed into 2D
keypoint heatmaps before being fed into the ResNet-32 [4]
backbone. ResNet-32 consists of 16 Basic Blocks, with
each block enhanced by a Convolutional Block Attention
Module (CBAM) [22] at its endpoint to perform spatial
and channel attention. The final feature vector output
from the ResNet-32+CBAM module is 512-dimensional,
which is then processed by dedicated classifier heads.
Each head predicts one of three amputation types or the
non-amputated state, resulting in a 4-dimensional output
vector for classification. During inference, we replace the
Ground Truth (GT) keypoints with 2D keypoints predicted
from the image using the ViTPose [24].

H. AJAHR-Tokenizer Implementation Detail

The AJAHR-Tokenizer architecture is inspired by To-
kenHMR [3]. Both the encoder and decoder consist of four
1D convolutional layers and a single ResNet [4] block. It
includes a codebook of size 256 x 2048 and 320 pose to-
kens. This configuration was selected based on the lowest
reconstruction errors in MPJPE and MVE metrics across the
AMASS [14], MOYO [18], and A3D datasets. Training is
conducted for 200,000 iterations with a batch size of 256,
a learning rate of 2 x 10~%, a gamma value of 5 x 1072,
and a weight decay of 1 x 10~°. To avoid data imbalance,
amputee and non-amputee samples are drawn with equal
probability (0.5 each) during training.



Method A3D AMASS [14] MOYO [18]
MPJPE, MVE] | MPJPE| MVE| | MPJPE, MVE|
CodeBook 128x2048 1.72 8.05 2.24 8.62 7.49 16.50
(320 tokens) 256x1024 1.92 8.50 2.50 8.80 7.15 16.18
20 5.51 12.60 7.62 15.00 | 23.10 38.87
Tokens 40 3.49 9.76 4.51 10.67 14.50 26.04
(Codebook: 256x2()48) 80 2.39 8.56 3.07 8.97 10.05 19.44
160 2.07 8.38 2.74 8.67 6.68 14.60
640 2.59 9.03 2.60 9.03 8.02 16.60
Ours (256x2048, 320 tokens) 1.56 8.01 1.90 8.08 5.52 13.47

Table C. Ablation Studies on AJAHR Tokenizer Configuration.
The MOYO [18] validation dataset was used for evaluation. In the
codebook size comparison experiment, the total number of tokens
was set to 320. In the token count comparison, the codebook size
was fixed to 256 x 2048.

I. Ablation Study of AJAHR Training

Tab. B compares the performance of the AJAHR model
across different training strategies. Here, Full Fine-Tuning
refers to updating all model parameters except for the frozen
AJAHR-Tokenizer, while Partially Fine-Tuning follows
the methodology outlined in Sec. F, where only a subset
of parameters is updated. In all experiments, the AJAHR-
Tokenizer remains pre-trained and frozen, not updated dur-
ing training.

In Tab. B(a), the evaluations utilize Ground Truth (GT)
labels of amputation regions, removing the corresponding
body parts from the predicted mesh prior to assessment. On
the non-amputee dataset, performance differences between
Partially Fine-Tuning and Full Fine-Tuning were minimal.
However, on the EMDB [9], Full Fine-Tuning demonstrated
superior performance. Notably, the Partially Fine-Tuning
approach combined with cross-attention achieved the best
performance on the ITW-amputee dataset. This indicates
that the partially fine-tuning strategy enabled by cross-
attention effectively enhances mesh reconstruction perfor-
mance irrespective of amputation status.

Meanwhile, Tab. B(b) extends the experiments by us-
ing amputation states predicted by BPAC-Net instead of GT
labels. The predicted labels were used to modify SMPL
pose parameters, and evaluations were conducted based on
meshes reflecting these amputation states.

On amputee datasets (A3D, ITW-amputee), our method
recorded the lowest errors in both MPJPE and PA-MPJPE
metrics, demonstrating that BPAC-Net reliably identifies
amputation sites and significantly improves reconstruction
accuracy. Although some cases involved misclassification,
incorrectly removing existing body parts or generating non-
existent limbs, the overall improvement in performance was
clearly evident. These results validate the proposed modular
architecture and illustrate the practical capability of BPAC-
Net to reliably predict amputation status in real-world sce-
narios. Furthermore, there was no noticeable performance
degradation on non-amputee datasets after applying BPAC-
Net, confirming its stability and reliability in general human
mesh reconstruction tasks.

J. Ablation Study on AJAHR-Tokenizer Set-
tings

As shown in Tab. C, performance improved consis-
tently with increased codebook size, highlighting the im-
portance of adequately large codebooks for representing di-
verse and complex human structures and poses. However,
excessively increasing the number of tokens posed a risk of
overfitting without further performance gains. Considering
these results, we selected a final tokenizer configuration of
a 256 x 2048 codebook with 320 tokens for training the
AJAHR model, achieving optimal performance.
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